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Self organization of shear bands in stainless steel
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Abstract

The spatial distribution of shear bands was investigated in 304L stainless steel through the radial collapse of a thick-walled cylinder
under high-strain-rate deformation (∼104 s−1). The shear-band initiation and propagation were also examined. Self-organization of multiple
adiabatic shear bands was observed. The effect of grain size on spacing of shear bands was investigated at four different grain sizes: 30�m,
50�m, 140�m and 280�m. A single crystal with a similar composition was also tested. The experimental results show only a modest
variation of shear-band spacing within the investigated grain size range. Three principal mechanisms are considered to be active in initiation:
(a) momentum diffusion by stress unloading, (b) perturbation in the stress/strain/temperature fields, (c) microstructural inhomogeneities.
The observed shear-band spacing is compared with existing theories; Grady–Kipp and Wright–Ockendon–Molinari theories. These are
one-dimensional theories that do not consider the evolution in spacing as the shear bands grow. A discontinuous growth mode for shear
localization under periodic perturbation is applied and predicts spacings in good agreement with observations. Self-organized initiation and
propagation modes are discussed in relation to the interaction among the nucleus and well-developed shear bands.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Thermally-assisted shear localization is one of the most
important deformation and failure mechanisms in materi-
als subjected to high strain rate deformation. Initial pertur-
bations lead to a non-uniform distribution of temperature,
which promotes localized softening and accelerates catas-
trophic failure. Adiabatic shear bands have been extensively
studied[1–3] since the mechanism was described by Zener
and Hollomon[4]. A significant body of research has been
carried out, correlating both the thermomechanical response
and metallurgical characteristics with the sensitivity to shear
localization. The perturbation analysis[5–8] was success-
fully used to model the evolution of localization. This evolu-
tion was experimentally investigated under controlled con-
ditions by Marchand and Duffy[9], among others.

In most studies, isolated bands were investigated. Nev-
ertheless, multiple shear bands are often found in dynamic
deformation events, such as explosion and impact. The
evolution of multiple shear bands exhibits some features of
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self-organization. Shear bands were first shown by Bowden
[10] to have a characteristic periodic spacing. Shockey[11]
used an expanding cylinder accelerated by explosives and
were able to determine the spacing of shear bands in steels.
Grady [12], Grady and Kipp[13], Wright and Ockendon
[14], and Molinari [15] developed theoretical predictions
for shear band spacing that represent a beginning of our
understanding of their collective behavior. More recently,
Nesterenko et al.[16,17] developed an explosive testing
method using a thick-walled cylinder specimen, which was
successfully used to investigate the spacing of shear bands.
This method has been successfully used by Nesterenko
et al. in titanium[18,19], copper[17], tantalum[20], and
Ti–6Al–4V [21–23]. It was also used to demonstrate the im-
portance of shear localization in granular materials[24,25].
This subject is comprehensively reviewed in[26,27]. Pre-
liminary results on self-organization of shear bands in 304
SS were recently presented[28,29].

The purpose of this paper is to extend these findings by
characterizing the evolution of multiple shear bands in a typ-
ical F.C.C. material (stainless steel), to analyze the spacing
characters and to compare it with the existing theories. For
the first time, the effects of microstructural variables (grain
size and annealing) on shear-band sensitivity, nucleation, and
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spatial pattern are investigated. A two-dimensional model
for evolving shear-band spacing, proposed for Ti–6Al–4V
[23], is extended to the present case.

2. Experimental procedure

The experimental configuration of the thick-walled cylin-
der explosion technique is described elsewhere[17–19]. A
tubular specimen is sandwiched between a copper driver tube
and a copper stopper tube and is collapsed inwards by the
detonation of explosives on the outer surface. The internal
diameters of copper were selected to produce a prescribed
and controlled final strain. In some special cases a central
steel rod was also used.

The maximum shear strain occurs on the internal surface
of the cylindrical specimen, and thus shear bands prefer-
entially initiate there.Fig. 1 shows a schematic with shear
bands initiating in the internal surface. After each experi-
ment, the cylinders were sectioned and polished. The lengths
of shear bands,li, the edge displacements,δi, the average
radius of final internal boundary,Rf , and the angle between
spatial position from origin,Ψi, were measured as shown in
Fig. 1. In order to compare the deformation at the different
positions on the specimen, an effective strain is calculated
from:

εef = 2√
3
εrr = 2√

3
ln

(
r0

rf

)
(1)

wherer0, rf are the initial and final radii of a reference point.
The effective global strain at the internal boundary of the
specimen is considered a characteristic value of deformation
since all the specimens have the same initial dimensions.
Based on the number of distinguishable shear bands, the
average spacing between them is:

L = ΨiRf

ni

√
2

(2)

whereni is the number of shear bands at the particular region
from the first band toith band andΨi is the corresponding

Fig. 1. Schematic representation of shear-band pattern in collapsing cylin-
der experiments and the basic experimental measurements that can be
made.

angle for this region. Ifni = ntotal, Ψi = 2π. The spacing
between shear bands decreases as plastic deformation pro-
ceeds. This effect was subtracted from the results with an
appropriate correction. Thus, the spacings represent values
at the initiation of the bands. The geometrical configura-
tion contribution to the spacing variation was removed from
the calculation of the shear band spacing by considering the
smallest effective strain as the initial stage of shear localiza-
tion. Hence, the spacing of shear bands can be expressed as:

L = ΨiRf
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whereRf0 is the radius of the specimen at shear band initia-
tion, andRf is the final radius, at any larger effective strain.
Li,i−1 is defined as the spacing betweenith andi−1th shear
bands inFig. 1. SinceRf < Rf0, the corrected spacing based
on the final configuration has a lower value.

An austenitic stainless steel (SS) AISI 304L (T-304L)
was selected to investigate the evolution of shear band spac-
ing. The as-received SS 304L bar, with a diameter of one
inch, was solution treated (average grain size of 30�m).
The heat treatment conditions were selected to provide
a wide variation of grain sizes: 800◦C/3 h, 1050◦C/3 h,
1280◦C/3 h, and 1330◦C/24 h, followed by water quench-
ing. The 800◦C/3 h annealed SS 304L has the same grain
size as the as-received steel. The grain size of the steels
annealed at 1050◦C/3 h, 1280◦C/3 h and 1330◦C/24 h are
50�m, 140�m, and 280�m, respectively. A single crystal
of Fe–Ni–Cr alloy was also tested in the same configura-
tion. The mill certificate for the 304L stainless steel lists
the following composition: Cr (18.18%), Ni (9.22%), Mn
(1.42%), N (0.25%), C (0.017%), Si (0.44%). The single
crystal has a composition of Cr (15%) and Ni (15%). The
total alloy content was approximately the same. Quasi-static
and dynamic compression tests were carried out for ma-
terials under all different heat treatment conditions. The
high-strain-rate mechanical response was measured by
means of compressive split-Hopkinson bar experiments.

The initial internal and external diameters of the
thick-walled cylindrical specimen were 14 mm and 21 mm,
respectively. The strain rate in the experiments wasγ̇ =
6 × 104 s−1. The thermal conductivity and heat capacity
for stainless steel are, respectively,k = 14.7 J/s m K andC
= 500 J/kg K. The strain rate sensitivity,m = 0.012, was
calculated from the quasi-static and dynamic tests; and the
thermal softening factor isa = 7.2×10−4 K−1 from [30].
The strain hardening index was measured and compared
with previous experimental data[30]. The tensile prop-
erties listed by the manufacturer are:σ0.2 = 249 MPa,σt
= 641 MPa, elongation= 58%.

3. Theoretical predictions

The current theories for predicting shear band spac-
ing can be classified into two types. They start from the
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one-dimensional momentum and energy conservation equa-
tions, but assume different mechanisms.

The concept of momentum diffusion was proposed by
Grady and Kipp (GK)[13]. The basic idea lies in the un-
loading from the center of the SB and is inspired by Mott’s
[31] seminal fracture work. The momentum diffusion due to
the unloading creates a rigid region around the shear bands.
This material is shielded from further shear band initiation.
Grady and Kipp[13] used a simple constitutive equation,
without work hardening or strain-rate sensitivity:

τ = τ0d[1 − a(T − T0)] (4)

The predicted shear band spacing,L, is

LGK = 2

[
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wherea is the thermal softening coefficient,k the thermal
conductivity,C the heat capacity,τ0 andτ0d the shear flow
stresses under quasistatic and dynamic conditions, respec-
tively. It is assumed that within a well-developed shear band
the shear stress is reduced to zero; this corresponds to the
later stages of shear localization with well developed shear
bands.

The second approach uses the perturbation analysis at the
critical transition from stable to unstable plastic deformation.
Grady [12], and Wright and Ockendon (WO)[14] devel-
oped this analysis for the one-dimensional simple shear case.
They assumed that the fastest growing perturbation wave-
length associated with the instability produced the minimum
spacing. They used a constitutive equation with strain-rate
sensitivity (but no work hardening):

τ = τ0[1 − a(T − T0)]

(
γ̇

γ̇0

)m

(6)

where γ̇ is a reference strain rate,τ0 the quasistatic strain
rate, andm the strain-rate sensitivity. The calculated spacing
of shear bands is:
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Molinari [15] modified the WO model by incorporating
the effect of strain hardening. A more complicated expres-
sion for the spacing was obtained. It is also based on the
growth of perturbations. His prediction for spacing (without
strain hardening effect) is:
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Table 1
Zerilli–Armstrong constitutive equation and coefficients for AISI 304L SS

C0 −76.9
K1 0.75
C2 2340
C3 0.0016
C4 0.00008
Cn 0.36

FCC : σ= C0 + k1d
−1/2 + C2ε

Cn exp(−C3T + C4T ln ε̇).

Eqs. (5), (7), and (8)(GK, WO and Molinari models) have
a similar form. The first part of each equation is the same,
although they were developed from different assumptions.
The only difference among them is in the material param-
eters such as the thermal softening,a, and strain rate hard-
ening,m. Table 1shows the parameters used in the calcula-
tions and the predictions of the three models for AISI 304.
The Molinari predictions are given for two cases: with and
without strain hardening. The GK model does not have a
strain-rate sensitivity parameter and represents the state of
affairs in the later stages of the evolution of shear localiza-
tion, when the regions surrounding the shear band are un-
loaded due to thermal softening. The difference between the
predictions of the GK model and WO/Molinari models is
roughly a factor of 10 for normal metals.

4. Experimental results

4.1. Constitutive responses and temperature estimation

Quasi-static and dynamic compression tests were carried
out at strain rates, respectively, of 10−3 s−1 and 3× 103 s−1.
Fig. 2shows the compressive stress–strain responses for the
as-received and 800◦C annealed stainless steel 304L. Both
materials exhibit similar quasi-static and dynamic responses
and have a similar yield stress (300 MPa) and a strong work
hardening. It is obvious that the difference of dynamic re-

Fig. 2. Quasi-static and dynamic responses of stainless steel 304L
in as-received and annealed conditions. Zerilli–Armstrong predictions:
squares (dynamic) and triangles (quasi-static).
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Fig. 3. Quasi-static and dynamic stress strain response of SS 304L with
different grain sizes (30�m, 50�m, and 140�m).

sponses between the as-received steel and the annealed steel
can be neglected.

The Zerilli–Armstrong equation for FCC metals[32,33]
was used to describe the constitutive behaviors of 304L stain-
less steel:

FCC : σ= C0 + k1d
−1/2 + C2ε

Cn exp(−C3T + C4T ln ε̇),

(9)

According to mechanical properties tested under both
quasistatic and dynamic conditions, the parameters in
Eq. (9) are given inTable 1. The comparison between the
Zerilli–Armstrong prediction and the experimental curves
for stainless steel 304L is shown inFig. 2.

The variation of grain size in this stainless steel was
achieved through different heat treatments.Fig. 3shows the
quasi-static and dynamic compression stress–strain curves
for the steels with different grain sizes: 30�m, 50�m, and
140�m. The Hall–Petch relation between the yield stress
and the annealing temperature is given inFig. 4. The trian-
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Fig. 4. Hall–Petch plot for AISI 304 SS under quasi-static (10−3 s−1) and
dynamic (3× 103 s−1) conditions.

gle and diamond marks show the experimental data for yield
stress at 10−3 s−1 and 10−3 s−1, respectively. The dashed
curve represents the Hall–Petch relation at 3× 103 s−1. The
solid line represents the Hall–Petch relation for quasistatic
behavior. Kestenbach and Meyers[34] also measured the
grain size dependence of the tensile yield stress for AISI
304SS. Their experimental results are represented as circles
in this figure. The current results are in close agreement with
their results[34]; σ0 andkgs in the Hall–Petch relation are
equal to 163.8 MPa and 0.75 MPa m1/2.

Based on the adiabatic assumption, the plastic work within
a shear band is completely converted into heat to rise the
local temperature. The temperature increment due to defor-
mation can be estimated through the predicted constitutive
relations. The constitutive description of Zerilli–Armstrong
provides the relation between stress and temperature. The
temperature change satisfies the following relation:

dT

dt
= β

σε̇

ρC(T)
, (10)

∫ T

T0

ρC(T)

βσ(T)
dT =

∫ t

0
ε̇dt =

∫ ε

0
dε = ε, (11)

whereρ andC are the density and the thermal capacity of
materials, respectively. The thermal conversion rate,β, is
a constant close to 1. Corresponding constitutive equations
for SS 304L inEq. (9), the thermal capacity (specific heat)
C(T) for stainless steel is:

SS 304L C(T) (J/kg K) = 9.278× 10−2 + 9 × 10−4T

+ 1.24× 104

T 2
.

In adiabatic case (β = 1), numerical integration of
Eq. (10)gives the relation between strain and temperature
increment. The temperature as the function of true strain
for stainless steel 304 is shown inFig. 5. The grain size
does not affect the heating significantly and its effect can
be ignored (seeFig. 5). In order to convert the true strain
to the corresponding shear strain, the following equation,
applicable to simple shear[35], was used:

γ =
√

2e2ε − 1 − 1. (12)

The relations between temperature and the converted engi-
neering shear strain are plotted inFig. 5(b). For Fig. 5(b)
only one grain size was used.

4.2. Shear-band characters in as-received stainless steel
and comparison

The development of multiple shear bands on the thick-
walled cylinder specimens reveals self-organization charac-
teristics. This confirms recent results obtained for Ti and
Ti–6Al–4V [22,23]. Fig. 6(a) and (b)show shear band pat-
terns in the cylindrical specimens for the as-received SS
304L. Small shear bands at the internal boundary of the
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Fig. 5. Predicted temperature in AISI 304 SS (d = 30�m, 50�m, and
140�m) as the function of (a) true strain; and (b) engineering shear strain
γ.

specimen are observed by optical microscopy at an effective
strain of 0.55 (Fig. 6(a)). Since most of shear bands had not
been fully developed, it is called the early stage.Fig. 6(b)
shows a fully developed shear band pattern with an effec-
tive strain of 0.92. Some shear bands traveled far deep into
the cylinder, or even passed through the whole thickness
of the specimen to the external boundary of the cylinder.
This is termed the late stage of a shear band pattern. Even
in this case, the major part of internal surface of the sam-
ple still maintains cylindrical shape with good symmetrical
geometry. A close-up observation exhibits the evolution of
shear band pattern. At the early stage, shear bands construct
a periodical array along the internal boundary inFig. 7(a).
The lengths of these bands are quite close. At the late stage
(εef = 0.92), some of bands grow faster than the others and
propagate into the body of the cylinder with the small bands
between them (seeFig. 7(b)).

Examination of these specimens was carried out under a
500× optical microscope. Shear bands with length less than
30�m were found to be indistinct and very hard to distin-
guish from the machined layer. Only the shear bands with
lengths above this critical value were recorded and mea-
sured.Fig. 8(a)–(d)show, in schematic fashion, the distri-
bution of shear bands for two groups of specimens in the
as-received condition. Only a small fraction of the bands are
shown. The number of bands is marked in the bottom of each
schematic.Fig. 8(a) and (b)represent two specimens with

Fig. 6. Overall view of shear band patterns in as-received stainless steel
at effective strains of 0.55 and 0.92.

the same effective strain of 0.55. The numbers of distinguish-
able shear bands are 272 and 235, respectively.Fig. 8(c) and
(d) show the spatial patterns of shear bands at the late stage
(εef = 0.92). The numbers of shear bands decrease to 165
and 192, respectively. The longer shear bands block the de-
velopment of the neighboring smaller shear bands. This is
evidenced in the regions marked “A” inFig. 8(c). The longer
bands form an enclosure (because they are clock-wise and
counter-clockwise) and restrict the growth of the included
bands.

A better quantitative assessment of shear-band evolution
is provided by plotting shear band lengthsLi, as a function of
position.Fig. 9gives the spectra of shear band distributions
in the as-received SS 304L. At the initial stage (Fig. 9(a))
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Fig. 7. Typical multiple shear-band patterns on the internal surface of
collapsed cylinder specimens: (a) early stage(effective strain of 0.55); and
(b) well-developed stage (effective strain 0.92).

the steel exhibits multiple shear bands distributed homoge-
neously in space. The lengths of distinguishable shear bands
vary from 0.03 mm to 0.86 mm. The difference is not very
large. The shear band pattern exhibits a periodical distribu-
tion. The spacing of shear bands for the as-received SS 304
is 0.12 mm.Fig. 9(b) shows the spectrum of shear bands
at the late stage. Some shear bands develop much longer
than the others and even reach the external boundary. Most
of shear bands have not extended beyond the length at the
initial stage (<0.9 mm), while a few shear bands grow to a
length close to 6.4 mm. It is noticed that the number of shear
bands decreases with the increase of effective strain. It can
be concluded that some shorter shear bands must have been
stopped and some disappeared during the collapse process.

Three theoretical predictions discussed inSection 3are
compared with the experimental results of shear band spac-
ings. The shear yield stress for the stainless steel is taken as
150 MPa (for the WO and M models) and the shear strain

Fig. 8. Schematic configurations of shear-band pattern in the as-received
304L stainless steel.

Fig. 9. Spatial distribution of shear bands in the as-received SS 304L at
two stages of evolution.



Q. Xue et al. / Materials Science and Engineering A 384 (2004) 35–46 41

Table 2
Shear band spacings: comparison between experimental results and pre-
dictions

Spacing (mm)

Experimental data full shear bands (mm) 0.12
Experimental data forl ≥ lcr = 1.8 mmLi 2.48
LGK (mm) 2.4
LWO (mm) 0.33
LMO (mm) 0.29

rate of the collapsed cylinder tests is 6× 104 s−1. The
predictions of shear band spacing from the three models
are calculated by using these parameters. The experimental
results and the predicted values for shear band spacings
are listed inTable 2. The two theoretical approaches give
different predictions. The perturbation predictions from
Wright–Ockendon (WO)[14] model and Molinari [15]
model are 0.33 mm and 0.29 mm, respectively. These data
are about 2.5 times of the experimental result of 0.12 mm,
but they are still of the same order of magnitude as the ex-
perimental data. In contrast, Grady–Kipp (GK)[13] model
predicts that the spacing of shear bands in stainless steel
equal to 2.40 mm, roughly 20 times of the experimental
result. Well developed bands are defined as bands having a
lengthl ≥ lcr, wherelcr is a critical length set as 1.8 mm. The
spacing of these well-developed bands wasLi = 2.48 mm.
This is in good agreement with the Grady–Kipp model.

The main differences between the two types of predic-
tions are the strain rate hardening,m and strain hardening,
n. The Grady–Kipp model uses a constitutive equation with-
out strain rate hardening effects. It appears that the strain
rate hardening may play an important role in the evolution
of shear band spacing. Unfortunately, GK prediction can
not be improved even though the rate hardening term is in-
troduced into constitutive equation. If we apply the same
rate-dependent constitutiveEq. (6) as that used in the WO
model, the strain rate term disappears under the assumption
that shear stress within the shear band goes to zero due to
thermal softening at well-developed stage. A simple critical
condition,a = (T − T0)−1, can be obtained, which is dis-
associated with the strain rate hardening. Therefore, the key
difference in these two types of models is the basic assump-
tions instead of the rate hardening term.

The WO/M models, based on perturbation analysis, re-
flect the behavior of shear bands at the initial plastic de-
formation stage. Shear bands develop from a weak pertur-
bation of homogeneously deformed materials. All possible
nuclei of shear bands are included into the growing pertur-
bations. The GK model considers the extreme case in which
the shear band totally loses its resistance to load. At this
stage shear bands should be completely developed and are
not any more weak perturbations. Not all of the shear band
nuclei can evolve to the well-developed stage. A fraction
of the shear bands cannot survive due to the competition
among them. This very important fact needs to be empha-

sized: there are several levels during the development of
spacing pattern of shear bands. Since the GK model uses an
extreme assumption that physically relates to the late stage,
the predicted spacing should be associated only with the well
developed, propagating shear bands. We need to consider
a critical cut-off length for the evolving shear bands. The
application of the cut-off length of shear bands means that
these shear bands with a length shorter than this value are
“decaying” or “dead”. Only the “propagating” or “living”
shear bands are considered to construct the new spatial pat-
tern. For example, if the critical length for our stainless steel
is 1.8 mm; there are 11 long shear bands in the as-received
steel from the spectrum of shear bands inFig. 9(b). The fi-
nal “living” (i.e. propagating) shear bands construct a new
spacing of 2.48 mm, which is fairly close to the GK predic-
tion. This result is also listed inTable 2.

4.3. Grain size effects on shear band character

The annealing of stainless steels at 800◦C, 1050◦C and
1280◦C results in different grain sizes. The spatial distri-
butions of shear bands in these annealed steels were exam-
ined under the same effective strains.Fig. 10(a)–(c)show
the shear band distribution at early stage (εef = 0.55). The
numbers of the shear bands for the three grain sizes, 30�m,
50�m, and 140�m, are 186, 220, and 184, respectively.
These numbers roughly remain at the same level. The corre-
sponding spacings of shear bands are 0.152 mm for the steel
with the grain size of 30�m, 0.136 mm for the steel with
grain size of 50�m, and 0.154 mm for the steel with the
grain size of 140�m. An additional test was performed on a
specimen with larger grain size, 280�m. The initial purpose
for this experiment was to examine how shear bands dis-
tributed if the grain size is larger than the spacing of bands.
The spectrum of shear bands in the specimen with a grain
size of 280�m is shown inFig. 10(d). The total number of
shear bands under the effective strain of 0.55 is 201. The
corresponding spacing of bands is 0.15 mm, which is almost
the same value as those in the samples with grain sizes of
50�m and 140�m. The spacing is not affected significantly
by the grain size although it varies over a range of five times.

The average length of bands increases with the increase
of the grain size. The maximum length of the shear bands
is less than 0.2 mm for a grain size of 30�m. It increases
to 0.3 mm for a grain size is 50�m and 1.0 mm for a grain
size of 140�m.

At late stage (εef = 0.92), the shear band distributions are
shown inFig. 11(a)–(c). Similar to the cases atεef = 0.55,
the numbers of shear bands are 194, 192, and 172 for the
three grain sizes, 30�m, 50�m, and 140�m, respectively.
The numbers of shear bands are quite similar to those at early
stage. It is clear that the saturation of shear band nucleation
happens in all these annealed steels. The critical effective
strain for the saturation is lower thanεef = 0.55. That can be
proved by the fact that the numbers of bands are not changed
for the different effective strain larger than 0.55. Subtracted
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Fig. 10. Spatial distribution of shear bands in annealed SS 304L with different grain sizes at early stage (εef = 0.55): (a)d = 30�m; (b) d = 50�m;
(c) d = 140�m, and (d)d = 280�m.

the geometrical part, the corresponding spacings of shear
bands are calculated as 0.15 mm, 0.15 mm, and 0.17 mm for
the steels with the grain size of 30�m, 50�m, and 140�m,
respectively. It shows again that the spacings of shear bands
vary with the grain size slightly. Spacing of shear bands in
the steel has a slow increase with the increase of the grain
size.

Most annealed samples have the grain sizes that are equal
to or less than the scale of spacing. A careful observation
of microstructure on the sectional surface of this sample in-
dicates that the larger grains have been squeezed in tangent
direction and elongated on the radial direction. The com-
pressed grains at the internal surface of the cylinder have
a similar size as the spacing. The nucleation sites tend to
locate at the grain boundary. However, the perturbation of
the grain boundaries seems not to dominate the nucleation
of shear bands. If grain size were to affect the nucleation
sites, the sample with the grain size of 280�m should have
fewer bands than that with the grain size of 50�m. The ex-
perimental result shows that the effect of grain boundary is
not significant to the formation of shear band patterns in
space.

Nesterenko and Bondar[16] examined the grain size effect
on the spacing of shear bands in copper. They found that the
number of shear bands in copper was the same for grain size

1000�m and 100�m (N = 30), but noticeably increased to
50 with grain size decrease to 30�m.

The spatial distributions of shear bands in these annealed
stainless steels are summarized inTable 3. The spacing
of shear bands is approximately constant and equal to
0.150 mm. It appears that there is no effect of grain size
on the spacing in the grain size range investigated. The
dependence on grain size enters three models throughτ01,
the yield stress. The dependence of the spacing on grain
size according to the WO equation, in which the Hall–Petch
relation was introduced, is given below:

LWO = 2π

(
m3kC

γ̇3
0a

2(τ01 + kgsd−1/2)

)1/4

. (13)

Table 3
Average spacings of shear bands in the annealed stainless steel with
different grain sizes

Specimen Grain size (�m) Spacing (mm)

Annealed 800◦C/3 h 30 0.15
Annealed 1050◦C/3 h 50 0.14
Annealed 1280◦C/3 h 140 0.16
Annealed 1330◦C/24 h 280 0.15
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Fig. 11. Spatial distribution of shear bands in annealed SS 304L with
different grain sizes at late stage (εef = 0.92): (a) d = 30 �m; (b) d
= 50 �m; and (c) d = 140 �m.

Fig. 12 shows the predicted spacing as a function of grain
size. Since the flow stress influence has the power of 1/4,
the variation of spacing is limited. The predicted results of
spacings vary from 0.335 mm to 0.363 mm, corresponding
to the grain size range marked between the left solid line and
the dash line. Therefore, it can be concluded that there is no
significant effect of grain size on the shear band spacing in
the range of grain sizes studied (30–280 �m).

Collapsed cylinder experiments were also carried out on
a single crystal alloy, Fe–15Cr–15Ni, which has a similar
composition of elements as 304L steel’s 18Cr–8Ni. The
quasi-static shear yield stress in this material is approxi-

Fig. 12. Wright–Okendon prediction of shear-band spacing as a function
of grain size. Solid lines indicate the range of variation of grain size in
the stainless steels in current experiments (dg: 30 �m ⇒ 21 mm); dashed
line shows the maximum grain size of polycrystalline stainless steel.

mately 70 MPa, much lower than 150 MPa in 304L steel.
The shear-band pattern of this material at an effective strain
of 0.92 is shown in Fig. 13(a). There is clear anisotropy,
which is analyzed separately [36]. Some shear bands con-

Fig. 13. Distribution of shear bands in single crystal Fe–15% Cr–15% Ni
alloy: (a) configuration of shear band pattern; and (b) spatial distribution
of shear bands: (εef = 0.92), N = 42.
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nected with cracks are distributed at the internal boundary
of the specimen. The number of shear bands is significantly
lower for the single crystal specimen. There are only 42
shear bands in total in the specimen, giving an average
spacing of 0.69 mm. The spectrum of shear bands for the
single crystal alloy is shown in Fig. 13(b). Since the spac-
ing between two shear bands is large, an average spacing
is estimated directly from the number of shear bands. This
result clearly shows that the spacing of shear bands, in gen-
eral, tends to increase with the increasing grain size. The
corresponding LWO spacing, using Eq. (12), is 0.384 mm
for a grain size of 21 mm (equal to specimen size). Thus,
the grain size effect alone cannot account for the change
observed, and it is not clear why the single crystal has
much larger shear-band spacing than the polycrystals in the
same collapse process configuration. The experiments car-
ried out here on polycrystals all had a spacing smaller than
the grain size; it was not possible to grow the grain size
in 304 SS beyond 300 �m. This leaves open the question
whether grain-scale inhomogeneities play a role. For the
monocrystal, these inhomogeneities do not exist.

5. Evolution of shear band spacing: two-dimensional
effects

It is clear that the interactions among shear bands in 304L
stainless steel exhibit a typical two-dimensional character;
this aspect is not incorporated into the GK or WO/M theo-
ries. The same observation was made in Ti and Ti–6Al–4V
[23]. This led Xue et al. [23] to develop a formalism and ap-
ply it to Ti and Ti–6Al–4V. It will be briefly reviewed here
prior to its application to AISI 304 SS. The influence of de-
veloped shear bands on adjacent nuclei had never been con-
sidered earlier; neither had the interactions among growing
bands. This dynamic model discussed here contains these
elements; thus, the shear band spacing changes as the bands
grow.

We assume that shear bands nucleate at the internal bound-
ary of the specimen, at sites determined by the small pertur-
bations of initial deformation. These may be, in metallurgi-
cal terms, favorably oriented grains and defects. We consider
a number of possible sites with varying potencies. The more
potent sites nucleate at a lower strain; each site is assumed
to have a characteristic volume V0. A probability of nucle-
ation, P(V0), in a reference volume, V0, is well described by
an equation based on Weibull [37]. Strain is taken as the in-
dependent variable, rather than stress in the original Weibull
formulation:

P(V0) = 1 − exp

[
−
(

ε − εi

ε0 − εi

)q]
, (14)

ε is the variable; εi is the critical strain below which no
initiation takes place; ε0 is an “average” nucleation strain
(material constant—when ε = ε0, P(V0) = 0.37); and q
is the Weibull modulus. The relation between P(V0) and

Fig. 14. Probability of nucleation of shear bands as a function of shear
strain for five values of q.

ε for the stainless steel is given in Fig. 14. The critical
strain and the mean nucleation strain are taken as 0.4 and
0.45, respectively, to best fit the experimental results; q is
given values of 1–5, providing different distributions. In the
geometry used in the current experiments (surface nucleation
of shear bands), V0 can be replaced by a distance along the
internal surface, L.

In Ti6Al4V it was found that there is a continuing shield-
ing effect, so that the bands that actually grow are often
a fraction of the total possible initiation sites. In contrast,
for Ti the shielding effect was not so important. Fig. 15 of
ref. [23] shows the schematic interaction between embryos
and growing shear bands. Each growing band generates a
shielded region around itself due to unloading. We assumed
that the width of the unloaded region is proportional to the
length of the shear band with a coefficient k1 [23]. Three
factors govern the evolution of self organization: (a) the im-
posed strain rate,ε̇; (b) the growth velocity of shear band, V;
(c) the initial spacing, L. When the ratio V/ε̇ is low, the em-
bryos are all activated before shielding occurs, and the nat-
ural spacing L establishes itself. As V/ε̇ increases, shielding
becomes more and more important, and the number of de-
activated embryos increases. Xue et al. [23] give a detailed
analysis of the shielding effect.

This shielding effect can be expressed as:

S = 2(ε0 − εi)V

k1ε̇L
(15)

This expression correctly predicts an increase in shielding
S with increasing V, decreasingε̇, and decreasing L. The
probability of nucleation with shielding is:

P(L) = (1 − S)P(V0)

=
(

1 − 2(ε0 − εi)v

ε̇L

){
1 − exp

[
−
(

ε − εi

ε0 − εi

)q]}
(16)

Fig. 15 shows predicted evolutions of nucleation probabili-
ties as a function of increasing strain, for different values of



Q. Xue et al. / Materials Science and Engineering A 384 (2004) 35–46 45

Fig. 15. Effect of shielding on the probability of nucleation as a function
of plastic strain (with different values of shielding, S = 0, 0.1, and 0.2).

the shielding factor, S: 0, 0.1, and 0.2. This model correctly
explain the increasing spacing as the shear bands develop,
shown in the spatial distribution plots of Figs. 10 and 11.
By adjusting q one can obtain different spacing evolution
patterns.

Further deformation leads to the heterogeneous growth of
these shear bands. Some shear bands grow faster than others.
The unloading of the fast-developed shear bands reduces
the speed of the adjacent small shear bands, and creates the
heterogeneous growth (see shear bands in Fig. 8(c)). The
favorable shear bands grow faster, while the unloaded shear
bands slow down, and finally stop. The “ living” shear bands
compete with each other and construct a new spatial pattern
by following the self-organization rule. The dead small shear
bands may stay at their original location, or may be merged
into the large plastic deformation of the surrounding area. In
the latter case the number of shear bands effectively reduces
as it happens at the late stage of the as-received stainless
steel specimen.

The driving force for shear-band propagation is the release
of elastic energy. The rate of nucleation is quite different
from the growth rate (or growth velocity). It is reasonable
to assume that the growth is governed by stress, whereas
initiation is governed by strain. The necessary condition is:

τg < τI (17)

where τg and τI are the critical shear stresses for growth and
initiation, respectively. The greater the difference, the higher
the velocity of propagation. The unloading waves sweep
through the surrounding area of a shear band and make any
new nucleation impossible within this area.

The interaction of shear bands leads to the competitive
growth of the propagating shear bands. In previous theories
the interaction among shear bands can only be treated as
a one-dimensional event at the simplest, elementary level.
Although the model presented here has many limitations, it
represents an evolution from previously proposed formula-
tions.

6. Conclusions

Shear-band characteristics and spacings in stainless steel
304L were experimentally investigated. The effects of ma-
terial parameters on the initiation and spatial distribution of
shear bands are analyzed. The spacing of propagating shear
bands is shown to decrease during the deformation process;
comparison with current analytical predictions shows that
the WO/M model predicts the initial level of self organi-
zation of shear bands, while the GK model shows a better
agreement with the behavior at the developed stage of shear
bands. However, these one-dimensional models do not ad-
dress the evolution of spacing. The as-received 304 steel
shows higher sensitivity to initiation of shear bands than the
annealed steels. The softening and the low density of dislo-
cations of crystal grains in the annealed steel are considered
to be responsible for this behavior. The grain size exerts
some effect on the spacing of shear bands, but no signif-
icant change occurs in the range of the tested grain sizes.
Separate experiments [38] reveal that the material inside the
shear band consists of grains with sub-micrometer sizes; it
is proposed that this is the result of a rotational dynamic re-
crystallization process. Glassy regions were also observed.

The Wright–Ockendon–Molinari and Grady–Kipp theo-
ries do not include the interaction effects of developed shear
bands and growth velocity on the nucleation. A discontinu-
ous growth mode was proposed earlier [23] and is applied
here. The spacing changes periodically, when it reaches the
interaction distance between adjacent shear bands (which
are a function of their lengths). The self-organized initiation
and propagation modes are discussed in terms of a model
incorporating the competitive growth of shear bands.
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